PROBLEMA 1.- El ácido sulfúrico, H₂SO₄, reacciona con el cobre para dar sulfato de cobre (II), dióxido de azufre y agua.

- a) ajusta esta reacción por el método del ión-electrón.
- b) Calcula la masa de sulfato de cobre (II) que se puede obtener cuando 2 mL de ácido sulfúrico del 96 % de riqueza en masa y densidad 1,84 g·mL⁻¹ reacciona con 1,27 g de cobre.

DATOS: $A_r(Cu) = 63.5 u$; $A_r(H) = 1u$; $A_r(O) = 16 u$; $A_r(S) = 32 u$.

Solución:

a) La reacción que se produce es: $H_2SO_4 + Cu \rightarrow CuSO_4 + SO_2 + H_2O$.

Las semirreacciones que se producen son:

$$SO_4^{2-} + 4 H^+ + 2 e^- \rightarrow SO_2 + 2 H_2O.$$

$$Cu - 2e^- \rightarrow Cu^{2+}$$
.

Sumándolas y ajustando los azufres se obtiene la reacción global ajustada:

$$2 \text{ H}_2\text{SO}_4 + \text{Cu} \rightarrow \text{CuSO}_4 + \text{SO}_2 + \text{H}_2\text{O}.$$

b) La molaridad de la disolución de partida es:

$$1,84 - \frac{g \ disolución}{mL \ disolución} \cdot \frac{1000 \ mL \ disolución}{L \ disolución} \cdot \frac{96 \ g \ H_2 SO_4}{100 \ g \ disolución} \cdot \frac{1 \ mol \ H_2 SO_4}{98 \ g \ H_2 SO_4} = 18,02 \ M.$$

Los moles en los 2 mL son: $n = M \cdot V = 18,02$ moles $\cdot L^{-1} \cdot 0,002$ L = 0,036 moles, luego, si 2 moles de ácido producen 1 mol de sal, los moles de sal que se obtienen son la mitad, es decir, 0,018 moles, a los que corresponden la masa: 0,018 moles $\cdot \frac{159,5 \text{ g sal}}{1 \text{ mol sal}} = 2,87 \text{ g}.$

Resultado: b) 2,87 g.

PROBLEMA 2.- En el equilibrio de disociación catalítica del etano C_2H_4 a 900 K, este se encuentra disociado en un 23 % cuando la presión total de equilibrio es 0,75 atm. Si el equilibrio que se establece es: C_2H_6 (g) \Rightarrow C_2H_4 (g + H_2 (g) calcula:

- a) La presión parcial de cada compuesto en el equilibrio.
- b) Las constantes K_p y K_c.
- c) Las concentraciones molares de eteno e hidrógeno en el equilibrio.

DATOS: $R = 0.062 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$.

Solución:

a) Si se parte de n moles de etano y se disocian el $0.23 \cdot n$ moles, en el equilibrio quedaran $0.77 \cdot n$ moles de etano, 0.23 moles de etano y 0.23 moles de hidrógeno. Los moles totales de gases en el equilibrio son $1.23 \cdot n$ moles, y sus fracciones molares son:

$$\chi_{C_2H_6} = \frac{0.77 \cdot n}{1.23 \cdot n} = 0.626;$$
 $\chi_{C_2H_4} = \chi_{H_2} = \frac{0.23 \cdot n}{1.23 \cdot n} = 0.187;$

Sus presiones parciales son P (C_2H_6) = 0,626 · 0,75 atm = 0,47 atm;

 $P(C_2H_4) = P(H_2) = 0.187 \cdot 0.75 \text{ atm} = 0.14 \text{ atm}.$

b)
$$K_p = \frac{P(C_2H_4)^2}{P(C_2H_6)} = \frac{0.14^2}{0.47} = 0.042 \text{ y } K_c = \frac{K_p}{R \cdot T} = \frac{0.042}{0.082 \cdot 900} = 5.7 \cdot 10^{-4}.$$

c)
$$C = \frac{P}{R \cdot T} = \frac{0.14 \text{ atm}}{0.082 \text{ atm} \cdot L \cdot mol^{-1} \cdot K^{-1} \cdot 900 \text{ K}} = 0.00189 \text{ M}.$$

Resultado: a) $P_p(C_2H_6) = 0.47$ atm; $P_p(C_2H_4) = P_p(H_2) = 0.14$ atm; b) $K_p = 0.042$ y $K_c = 5.7 \cdot 10^{-4}$; c) 0.00189 M.

CUESTIÓN 3.- En un laboratorio aparece un frasco sin etiqueta que contiene una sal. Existe la duda de si se trata de acetato de potasio o cloruro de amonio. Razona de qué sal se trata si al disolverla en agua se obtiene una disolución cuyo pH es 8,1.

Solución:

Se disuelve la sal y, debido a que los iones K⁺ y Cl⁻ son el ácido y la base conjugada, muy débiles de la base KOH y el ácido HCl, muy fuertes, no sufren hidrólisis, se procede a hidrolizar los iones acetato y amonio para determinar el que produce iones hidróxido, OH-, que será la sal que se encuentre en el frasco por producir el pH indicado.

$$CH_3COO^- + H_2O \implies CH_3COOH + OH^-;$$

$$NH_4^+ + H_2O \implies NH_3 + H_3O^+.$$

Luego, en el frasco se encuentra la sal acetato de potasio.

OPCIÓN B

PROBLEMA 1. El amoniaco se disuelve en agua de acuerdo con el siguiente equilibrio:

NH₃ + H₂O

⇒ NH₄⁺ + OH⁻. Se tiene una disolución acuosa de amoniaco en la que éste se encuentra ionizado un 5 %. Calcula:

- a) La concentración inicial de amoniaco.
- b) La concentración de todas las especies en el equilibrio.
- c) El pH de la disolución:

DATOS: K_b (NH₃) = 1,8 · 10⁻⁵.

Solución:

a) Llamando Co a la concentración inicial de la disolución acuosa del amoniaco, y siendo el grado de ionización del amoniaco 0,05, las concentraciones iniciales y en el equilibrio de las distintas especies son:

y operando se obtiene el valor:

$$K_{b} = \frac{\left[NH_{4}^{+}\right] \cdot \left[OH^{-}\right]}{\left[NH_{3}\right]} \implies 1.8 \cdot 10^{-5} = \frac{0.05^{2} \cdot C_{o}^{2}}{0.95 \cdot C_{o}} \implies C_{o} = \frac{1.8 \cdot 0.95 \cdot 10^{-5}}{0.05^{2}} = 0.0068 \text{ M}.$$

- b) La concentración de cada especie en el equilibrio es: $[NH_3] = 0.95 \cdot 0.0068 = 0.0065 M$; $[NH_4^+] = [OH^-] = 0.05 \cdot 0.0068 = 0.00034 \text{ M}.$
- c) Se determina el pOH de la disolución y de la expresión pH + pOH = 14, de obtiene el valor del pH.

pOH =
$$-\log [OH^-] = -\log 0,00034 = 3,47$$
, por lo que el pH es: pH = $14 - 3,47 = 10,53$. **Resultado:** a) [NH₃] 0,0068 M; b) [NH₃] = 0,0065 M; [NH₄⁺] = [OH⁻] = 0,00034 M; c) pH = 10,53.

PROBLEMA 2.- Sabiendo que las entalpías estándar de formación del CO₂ (g) y del H₂O (l) son -393,3 kJ \cdot mol⁻¹ y – 285,8 kJ \cdot mol⁻¹, respectivamente, y que el calor de combustión del ácido acético líquido, a 25 °C, es $-874.0 \text{ kJ} \cdot \text{mol}^{-1}$:

- a) Escribe las reacciones correspondientes a los procesos citados y la de formación del ácido acético líquido.
- b) Calcula la entalpía estándar de formación del ácido acético líquido.
- Calcula a energía que se desprenderá al obtener 25 L de CO₂ (g), medidos a 740 mm Hg de presión y 25 °C, mediante la combustión del ácido acético líquido.

DATOS: R = 0.062 atm · L·mol⁻¹ · K⁻¹.

Solución:

a) Las reacciones de combustión del C, H₂ y CH₃ – COOH con sus respectivas entalpías son:

$$\begin{split} &C\left(s\right) \,+\, O_{2}\left(g\right) \,\to\, CO_{2}\left(g\right) \\ &H_{2}\left(g\right) \,+\, \frac{1}{2}\,O_{2}\left(g\right) \,\to\, H_{2}O\left(l\right) \\ &CH_{3}-COOH\left(l\right) \,+\, 2\,O_{2}\left(g\right) \,\to\, 2\,CO_{2}\left(g\right) \,+\, 2\,H_{2}O\left(l\right) \\ &2\,C\left(s\right) \,+\, 2\,H_{2}\left(g\right) \,+\, O_{2}\left(g\right) \,\to\, CH_{3}-COOH\left(l\right) \\ \end{split} \qquad \qquad \begin{array}{l} \Delta H^{o}_{\ c} = -\,393,3\ kJ\cdot mol^{-1}; \\ \Delta H^{o}_{\ c} = -\,285,8\ kJ\cdot mol^{-1}; \\ \Delta H^{o}_{\ c} = -\,874,0\ kJ\cdot mol^{-1$$

b) Multiplicando las ecuaciones de combustión del C e H por 2, incluida sus entalpías, invirtiendo la ecuación de combustión del CH₃ – COOH, cambiando el signo a su entalpía, y sumándolas, ley de Hess, se obtiene la ecuación de síntesis del ácido acético con el valor de su entalpía:

$$\begin{array}{lll} 2\ C\ (s)\ +\ 2\ O_{2}\ (g) & \Delta H^{\circ}_{\ c} = -\ 786,6\ kJ\cdot mol^{-1}; \\ 2\ H_{2}\ (g)\ +\ O_{2}\ (g) & \rightarrow\ 2\ H_{2}O\ (l) & \Delta H^{\circ}_{\ c} = -\ 571,6\ kJ\cdot mol^{-1}; \\ 2\ CO_{2}\ (g)\ +\ 2\ H_{2}O\ (l) & \rightarrow\ CH_{3}-COOH\ (l)\ +\ 2\ O_{2}\ (g) & \Delta H^{\circ}_{\ c} = \ 874,0\ kJ\cdot mol^{-1}; \\ 2\ C\ (s)\ +\ 2\ H_{2}\ (g)\ +\ O_{2}\ (g) & \rightarrow\ CH_{3}-COOH\ (l) & \Delta H^{\circ}_{\ f} = -\ 484,2\ kJ\cdot mol^{-1}; \end{array}$$

c) Los moles correspondientes a los $25\ L$ de CO_2 (g) en las condiciones indicadas, se obtienen de la ecuación de estado de los gases ideales:

$$n (CO_2) = \frac{P \cdot V}{R \cdot T} = \frac{740 \ mm \ Hg \cdot \frac{1 \ atm}{760 \ mm \ Hg} \cdot 25 \ L}{0,082 \ atm \cdot L \cdot mol^{-1} \cdot K^{-1} \cdot 298 \ K} = 1,02 \ moles.$$

Si la obtención de dos moles de CO₂ (g) desprende 874,0 kJ, los 1,02 moles desprenderán:

1,02 moles
$$\cdot \frac{-874 \text{ kJ}}{2 \text{ moles}} = 445,74 \text{ kJ}.$$

Resultado: b)
$$\Delta H_f^0 = -484.2 \text{ kJ} \cdot \text{mol}^{-1}$$
; c) 445,74 kJ.

CUESTIÓN 2.- Sea la siguiente reacción electroquímica espontánea a 25 °C:

$$2 Ag^{+} + Cd \rightarrow Ag + Cd^{2+}.$$

- a) Escribe la notación de la pila representada en la ecuación.
- b) Indica cuál es el electrodo con el mayor valor de E^o.

Solución:

- a) La notación de la pila es: Cd (s) | Cd²⁺ (ac 1 M) | Ag⁺ (ac 1 M) | Ag (s).
- b) El electrodo con mayor valor de su potencial normal estándar en una pila es el que actúa como cátodo.